Performs sweeps for model terms in an analysis of variance (R.W. Payne).
Options
TERM = formula |
Model term (or terms) involved in the sweep (this need not be specified if EMETHOD=given ); default is to sweep for the grand mean |
---|---|
EFFICIENCY = scalar |
Efficiency factor of the term(s) |
EMETHOD = string token |
Source of the effects (calculated , given ); default calc |
RMETHOD = string token |
Method to be used to obtain the residual variate (subtract , replace ); default subt |
Parameters
Y = variate |
Working variates to be swept |
---|---|
EFFECTS = table |
Estimated effects |
RESIDUALS = variate |
New working variates, following the sweep |
SS = scalars |
Sum of squares due to the term(s) |
RSS = scalars |
Sum of squares of the working variate after the sweep |
Description
The analysis-of-variance algorithm in the Genstat ANOVA
directive involves a series of sweep operations performed on a working variate which initially contains the data values and finally contains the residuals. Sweeps may have two parts. The first involves the estimation of the effects of a particular term. For a term that is orthogonal to the terms that preceed it in the model, the effects are estimated simply by the tables of means for that term, calculated from the working variate; for non-orthogonal terms, the effects are the means divided by an efficiency factor. In the second part, the working variate is modified. Usually this involves subtracting the estimated effects. Alternatively there is a special sweep, known as a pivot, which is used to initiate the analysis within a stratum. In this, the value in each unit of the working variate is replaced by the corresponding effect of the term. Further details can be found in the Guide to the Genstat Command Language, Part 2, Section 4.7.5, or in the paper by Payne & Wilkinson (1977). Procedure ASWEEP
is provided as a research tool for studying the algorithm and its properties.
The values initially in the working variate are specified by the Y
parameter. The procedure can sweep for a single term or, if several terms have the same efficiency factor, these can all be swept together. The TERM
option specifies the term (or terms) and the efficiency factor is defined by the EFFICIENCY
option. The EFFECTS
parameter allows the estimated effects of the term(s) to be stored if option EMETHOD=calculated
, or to be supplied if EMETHOD=given
. The values in the working variate after the sweep can be saved using the RESIDUALS
parameter, and the RMETHOD
option indicates whether these are to be formed by an ordinary sweep (RMETHOD=subtract
) or by a pivot (RMETHOD=replace
). The SS
parameter saves the sum of squares due to the term(s), and the RSS
parameter saves the sum of squares of the working variate after the sweep.
Options: TERM
, EFFICIENCY
, EMETHOD
, RMETHOD
.
Parameters: Y
, EFFECTS
, RESIDUAL
, SS
, RSS
.
Method
The procedure uses the standard Genstat directives for analysis of variance, calculations and manipulation.
Action with RESTRICT
If the working variate (specified by the Y
parameter) is restricted, the sweep will use only the units not excluded by the restriction.
Reference
Payne, R.W. & Wilkinson, G.N. (1977). A general algorithm for analysis of variance. Applied Statistics, 26, 251-260.
See also
Directive: ANOVA
.
Procedures: AEFFICIENCY
, AMTIER
, FPROJECTIONMATRIX
.
Commands for: Analysis of variance.
Example
CAPTION 'ASWEEP example',\ !t('Sweeps required to analyse the design',\ 'discussed by Payne & Wilkinson (1977).'); STYLE=meta,plain FACTOR [NVALUES=32; LEVELS=2] A,Pf & [LEVELS=4] B,Plots & [LEVELS=8] Blocks GENERATE Blocks,Plots READ [PRINT=*] A,B,Pf 1 1 2 2 2 1 2 3 1 1 4 2 2 1 2 1 2 1 1 3 1 2 4 2 2 1 2 1 2 1 2 3 1 1 4 2 1 1 2 1 3 1 2 2 1 2 4 2 2 1 2 1 3 1 2 2 1 1 4 2 1 1 2 1 2 1 2 3 1 2 4 2 1 2 1 1 3 1 2 2 1 2 3 1 1 1 2 2 1 2 1 4 2 2 4 2 : VARIATE [NVALUES=32] Yv READ [PRINT=*] Yv 101 291 373 398 106 265 312 450 89 272 338 407 106 324 306 449 128 323 334 423 87 279 324 471 302 324 272 361 131 103 445 437 : POINTER [NVALUES=!t('Blocks stratum: B ',\ '..............: A.B ',\ '..............: Residual',\ 'Blocks.Plots stratum: A ',\ '....................: B ',\ '....................: A.B ',\ '....................: Residual')] ss " sweep for the grand mean " ASWEEP Yv; RESIDUAL=Y " sweep for Blocks " ASWEEP [TERM=Blocks] Y; RESIDUAL=Y; EFFECTS=EffBl " Blocks.Plots stratum: sweep for A " ASWEEP [TERM=A] Y; RESIDUAL=Y; SS=ss[4] " sweep for pseudo-term Pf " ASWEEP [TERM=Pf; EFFICIENCY=0.75] Y; RESIDUAL=Y; SS=PSS " reanalysis sweep for Blocks " ASWEEP [TERM=Blocks] Y; RESIDUAL=Y " sweep for B " ASWEEP [TERM=B] Y; RESIDUAL=Y; SS=ss[5] CALCULATE ss[5] = ss[5] + PSS " sweep for pseudo-term A.Pf " ASWEEP [TERM=A.Pf; EFFICIENCY=0.75] Y; RESIDUAL=Y; SS=PSS " reanalysis sweep for Blocks " ASWEEP [TERM=Blocks] Y; RESIDUAL=Y " sweep for A.B " ASWEEP [TERM=A.B; EFFICIENCY=0.75] Y; RESIDUAL=Y; SS=ss[6] CALCULATE ss[6] = ss[6] + PSS " reanalysis sweep for Blocks " ASWEEP [TERM=Blocks] Y; RESIDUAL=Y; RSS=ss[7] " Blocks stratum: initial pivot " ASWEEP [TERM=Blocks; EMETHOD=given; RMETHOD=replace] Y; RESID=Y; EFF=EffBl " sweep for pseudo-term Pf " ASWEEP [TERM=Pf; EFFICIENCY=0.25] Y; RESIDUAL=Y; SS=ss[1] " reanalysis sweep (pivot) for Blocks " ASWEEP [TERM=Blocks; RMETHOD=replace] Y; RESIDUAL=Y " sweep for pseudo-term A.Pf " ASWEEP [TERM=A.Pf; EFFICIENCY=0.25] Y; RESIDUAL=Y; SS=PSS " reanalysis sweep (pivot) for Blocks " ASWEEP [TERM=Blocks; RMETHOD=replace] Y; RESIDUAL=Y " sweep for A.B " ASWEEP [TERM=A.B; EFFICIENCY=0.25] Y; RESIDUAL=Y; SS=ss[2] CALCULATE ss[2] = ss[2] + PSS " reanalysis sweep (pivot) for Blocks " ASWEEP [TERM=Blocks; RMETHOD=replace] Y; RESIDUAL=Y; RSS=ss[3] SCALAR Chan ENQUIRE Chan; FILETYPE=output; OUTSTYLE=Style OUTPUT [STYLE=plain] PRINT [SERIAL=yes; SQUASH=yes; ORIENTATION=across] ss[]; DECIMALS=1 OUTPUT [STYLE=#Style] " compare with ANOVA " BLOCKS Blocks/Plots TREATMENTS A*(B//Pf) ANOVA [PRINT=aov] Yv